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Abstract

When analyzing correlated time to event data, shared frailty (random effect) models
are particularly attractive. However, the estimation of such models has proved challenging.
In semiparametric models, this is further complicated by the presence of the nonparamet-
ric baseline hazard. Although recent years have seen an increased availability of software
for fitting frailty models, most software packages focus either on a small number of dis-
tributions of the random effect, or support only on a few data scenarios. frailtyEM is an
R package that provides maximum likelihood estimation of semiparametric shared frailty
models using the Expectation-Maximization algorithm. The implementation is consistent
across several scenarios, including possibly left truncated clustered failures and recurrent
events in both calendar time and gap time formulation. A large number of frailty distri-
butions belonging to the Power Variance Function family are supported. Several methods
facilitate access to predicted survival and cumulative hazard curves, both for an individ-
ual and on a population level. An extensive number of summary measures and statistical
tests are also provided.

Keywords: shared frailty, EM algorithm, recurrent events, clustered failures, left truncation,
survival analysis, R.

1. Introduction

Time-to-event data are very common in medical applications. Often, these data are charac-
terized by incomplete observations. For example, the phenomenon of right censoring occurs
when the actual event time is not observed, but the only thing that is known is that the event
has not taken place by the end of follow-up. Sometimes, individuals enter the data set only if
they have not experienced the event before a certain time point. This is known as left trunca-
tion, which, if not accounted for correctly, leads to bias. Regression models for such data have
been developed in the field of survival analysis. The most popular is the Cox proportional
hazards model (Cox 1972), which is semiparametric in nature: the effect of the covariates is
assumed to be time-constant and fully parametric, while the time-dependent probability of
observing an event arises from the nonparametric baseline hazard. Cox regression has been
the standard in survival analysis for a few reasons. First, it does not require any a priori
assumptions about the baseline hazard. Second, under the proportional hazards assumption,
maximum likelihood estimation can be carried out efficiently using Cox’s partial likelihood.
Nowadays, such models may be estimated with most statistical software, such as R (R Core
Team 2016) Stata (StataCorp 2017), SAS (SAS Institute Inc. 2003) or SPSS (IBM Corp 2016).
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When individuals belong to clusters, or may experience recurrent events, the observations
are correlated. In this case the Cox model is not appropriate for modeling individual risk. A
natural extension is represented by random effect “shared frailty” models. Originating from
the field of demographics (Vaupel, Manton, and Stallard 1979), these models traditionally
assume that the proportional hazards model holds conditional on the frailty, a random effect
that acts multiplicatively on the hazard. The variance of the frailty is usually indicative of the
degree of heterogeneity in the data. This makes the choice of the random effect distribution
relevant. However, the simplicity that made the Cox model so popular does not carry over
to such models.
Arguably the most popular way of fitting semiparametric shared frailty models is via the pe-
nalized likelihood method (Therneau, Grambsch, and Pankratz 2003), available for the gamma
and log-normal frailty distributions. This is the standard in the survival package (Therneau
and Grambsch 2000; Therneau 2015a) in R, in the PHREG command in SAS and the streg
procedure in Stata. This method has the advantage that it is generally fast and the Cox
model is contained as a limiting case when the variance of the frailty is 0. However, this algo-
rithm can not be used for estimating other frailty distributions or left-truncated data, and the
provided standard errors are presented under the assumption that the estimated parameters
of the frailty distribution are fixed. Log-normal frailty models may also be estimated in R
via Laplace approximation in coxme (Therneau 2015b), h-likelihood in frailtyHL (Do Ha,
Noh, and Lee 2012) or Monte Carlo Expectation-Maximization phmm (Donohue and Xu
2013; Vaida and Xu 2000; Donohue, Overholser, Xu, and Florin 2011). Parametric and spline
based shared frailty models are implemented for the gamma and log-normal distributions
in the frailtypack package (Rondeau, Mazroui, and Gonzalez 2012; Rondeau and Gonzalez
2005).
In Hougaard (2000), the Power Variance Function (PVF) family was proposed for modeling
the frailty distribution. This family of frailty distributions includes the gamma, positive stable
(PS), inverse Gaussian (IG) and compound Poisson distributions with mass at 0. Each choice
of the distribution for the frailty implies a different marginal model, with some emphasizing
early dependence of the observations (IG) and others late dependence (gamma). Of particular
interest is the PS distribution: with assumed proportional hazards conditional on the frailty,
the PS implies proportional hazards also unconditional on the frailty. This is unlike the
other distributions which imply non-proportional hazards at the marginal level. Therefore,
this is the only distribution where the potential violation of the proportional hazards is not
confounded with a frailty effect.
The software implementation of the the PVF family of distributions so far been limited. At
this time, two R packages incorporate a larger number of distributions from this family: the
frailtySurv package (Monaco, Gorfine, and Hsu 2017; Gorfine, Zucker, and Hsu 2006) imple-
ments the above mentioned distributions except the PS via a pseudo full likelihood approach
and the parfm package (Munda, Rotolo, Legrand et al. 2012) estimates fully parametric
gamma, IG, PS and log-normal frailty models.
In this paper we present frailtyEM (Balan and Putter 2017), an R package which uses the
general Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) for
fitting semiparametric shared frailty models. This implementation comes to complete the
landscape of packages that may be used for such models, with support for the whole PVF
family of distributions for the scenarios of clustered failures, clustered failures with left trun-
cation and recurrent events data. In the latter case, different time scales are supported, such
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as calendar time (time since origin of the recurrent event process) and gap time (time since
previous recurrent event). Point estimates for regression coefficients are provided with con-
fidence intervals that take into account the estimation of the frailty distribution parameters,
and plotting methods facilitate the visualization of both conditional and marginal survival
or cumulative hazard curves with 95% confidence bands, marginal covariate effects, and em-
pirical Bayes estimates of the random effects. A comparison with respect to functionality
between frailtyEM and other R packages is provided in Table 1.
The rest of this paper is structured as follows. In Section 2 we present a brief overview the
semiparametric shared frailty model, and the implications of left truncation. In Section 3 we
discuss the estimation method and its implementation. In Section 4 we illustrate the usage
of the functions from the frailtyEM package on three classical data sets available in R.

2. Model

2.1. Shared frailty models
In frailtyEM, the general framework is of I clusters with Ji individuals within cluster i,
i = 1, . . . , I. The event history of individual j from cluster i is represented by a counting
process Nij , with Nij(t) representing the number of events observed until time t. The “at-
risk” process Yij(t) is defined as 1 when individual (ij) is under observation and 0 otherwise,
and a vector of possibly time dependent covariates is denoted as xij(t).
The clustered failures scenario is represented when the Nij(t) ≤ 1 and Yij(t) = 0 after an
event or right censoring. The data in cluster i consists of Ji possibly right censored survival
times. If Nij(t) exceeds 1, the case of recurrent events is obtained. In this scenario, it is
considered that each cluster contains only one individual (Ji ≡ 1, with the corresponding
counting process Ni). Calendar time (also known as Andersen-Gill) models, when the time
scale is “time since origin” and gap time models, where the time scale is “time since the
previous event” are commonly employed (Cook and Lawless 2007). When subject i is no
longer under observation, the last time point is typically considered right censored.
The intensity of Nij (or hazard, in the clustered failure scenarios) is specified as

λij(t|Zi) = Yij(t)Zi exp(β⊤xij(t))λ0(t) (1)

where Zi is an unobserved random effect common to all observations from cluster i (the
“shared frailty”), β a vector of unknown regression coefficients and λ0(t) ≥ 0 an unspecified
baseline intensity function. It is assumed that the Zi are iid random variables with a distri-
bution referred to as Z, and that event times are independent given Zi. A stratified model
(1) may also be specified by specifying different baseline intensities for different groups of
observations. In this case, if individual (i, j) belongs to strata s, λ0(t) is replaced by λ0s(t).
We consider the general case where the Z follows a distribution with positive support from
the infinitely divisible family, i.e., they are i.i.d. realizations of a random variable described
by the Laplace transform

LZ(c;α, γ) ≡ E [exp(−Zc)] = exp(−αψ(c; γ)) (2)

with α > 0 and γ > 0. This formulation includes several distributions, such as the gamma,
positive stable, inverse Gaussian and compound Poisson distributions. This so-called power-
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variance-function (PVF) family of distributions have been extensively studied in Hougaard
(2000). As detailed in Appendix A1, we assume that an identifiability constraint is imposed
on the parameters α and γ and that the distribution of Z is indexed by a scalar parameter θ.

2.2. Likelihood

Henceforth, we consider the problem of estimating β, λ0 and θ via maximum likelihood. This
is achieved by maximizing the marginal likelihood, based on the observed data and obtained
by integrating over the random effect. For simplicity, we omit potential strata in this section.
From model (1), the marginal likelihood is obtained as the product over clusters of expected
marginal contributions, i.e.,

L(θ, β, λ0(·)) =
∏

i

Eθ

∏
j

∫ ∞

0

{
Yij(t)Z exp(β⊤xij(t)λ0(t)

}dNij(t)

× exp

−
∑

j

∫ ∞

0
Yij(t)Z exp(β⊤xij(t))λ0(t)dt


The first part reduces to a product of contributions from the observed event times of the
counting processes from cluster i. Denote the k-th observed time corresponding to the
counting process Nij as tijk and δijk = 1 if tijk is an event time and 0 otherwise. Let
Λ̃i = ∑

j

∫∞
0 Yij(t) exp(β⊤xij(t))λ0(t)dt and ni = ∑

j

∫∞
0 Yij(t)dNij(t) the number of observed

events in cluster i. The marginal likelihood can be written as

L(θ, β, λ0(·)) =
∏

i

∏
j

∏
k

{
exp(β⊤xij(tijk))λ0(tijk)

}δijk

Eθ

[
Zni exp(−ZΛ̃i)

]
. (3)

By using (2), the last term may be expressed in terms of the ni-th derivative of the Laplace
transform, i.e.

Eθ

[
Zni exp(−ZΛ̃i)

]
= (−1)niL(ni)

Z (Λ̃i).

In frailtyEM, the Breslow estimator is employed for the baseline hazard, i.e., λ0(t) ≡ λ0t for
t an event time, and 0 otherwise. This is equivalent with estimating

∫ t
0 λ0(s)ds as a step

function with “jumps” of size λ0t at event times.

2.3. Ascertainment and left truncation

The problem of ascertainment with random effect time-to-event data is usually difficult. If
Zi is the distribution of the frailty of cluster i and Ai denotes the event of selecting the
observations in cluster i, the random effect distribution of cluster i given the ascertainment
is of the form Zi|Ai. The Laplace transform of Zi|Ai follows from Bayes’ rule as

LZi|Ai
(c) = E [P(Ai|Zi) exp(−cZi)]

E [P(Ai|Zi)]
. (4)
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Expressing P(Ai|Zi) depends on the type of the study at hand and on the way the data were
collected.
In frailtyEM an option is included to deal with the scenario of left truncation for clustered
failures. Consider that from a cluster of size J̃i, Ji ≤ J̃i individuals are are selected and Ai

is the event “selecting Ji individuals with left truncation times tL,i = {tL,i1 . . . tL,iJi}”. Then
Ai can be expressed as

P(Ai|Zi) = P(Ti1 > tL,i1, Ti2 > tL,i2...TJi > tL,iJi |Zi).

A hidden assumption here is that the true cluster size J̃i does not depend on the frailty. For
example, if a high frailty is associated with both a high rate of events and smaller cluster
sizes, then the distribution of J̃i|Z must also be considered (Jensen, Brookmeyer, Aaby, and
Andersen 2004).
Assume that, given Zi, the left truncation times tL,i are independent. In this case,

P(Ai|Zi) =
Ji∏

j=1
exp

(
−Zi

∫ tL,ij

0
exp(β⊤xij(t))λ0(t)dt

)
. (5)

A difficulty here is that the values of the covariate vector and of the baseline intensity must
be known prior to the entry time in the study. Therefore, only cases when xi is time constant
are considered.
Denote Λ̃L,i = ∑

j

∫ tL,ij

0 exp(β⊤xij)λ0(t)dt. The marginal likelihood may be obtained from
(3), (4) and (5) as

L(θ, β, λ0(·)) =
∏

i

∏
j

∏
k

{
exp(β⊤xij(tijk))λ0(tijk)

}δijk

×

×
Eθ

[
Zni exp

(
−Z(Λ̃L,i + Λ̃i)

)]
Eθ

[
exp(−ZΛ̃L,i)

] .

It can also be seen that, if the frailty distribution is degenerate and has no variability (i.e.
Eθ may be removed), then the contribution of Λ̃L,i cancels out. In particular, under left
truncation, the Laplace distribution of Z|Ai is given by

LZ|A(c) = L(c+ Λ̃L,i)
L(Λ̃L,i)

. (6)

This distribution is often referred to as the frailty distribution of the survivors (Hougaard
2000). If Z is from the PVF family, it can be shown that Z|A is also in the PVF family. As
a result, if Z is gamma distributed, then also Z|A is gamma distributed.
Note that, in general, the ascertainment scheme does not have a simple description and
P (Ai|Zi) may or may not be available in closed form. For example, in family studies, the
families may be selected only when a number of individuals live long enough (Rodríguez-
Girondo, Deelen, Slagboom, and Houwing-Duistermaat 2016). In this case, (5) does not hold.
In the case of registry data on recurrent events, individuals (clusters) may be selected only if
they have at least one event during a certain time window (Balan, Jonker, Johannesma, and
Putter 2016b). These specific cases are not currently accommodated by frailtyEM.
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2.4. Analysis and quantities of interest

Inference

In frailtyEM, inference from the likelihood (3) is based on the non-parametric information
matrix. This is obtained by treating each λ0(t) ≡ λ0t as a finite-dimensional parameter. Even
though its dimension grows with the number of event time points in the data, this has been
shown to lead to consistent variance estimators (Andersen, Klein, Knudsen, and y Palacios
1997).
For assessing whether the frailty model is a better fit than the Cox proportional hazards model,
the likelihood ratio test may be used. With the parametrizations described in Appendix A1,
this is a problem of testing on the edge of the parameter space, and the test statistic under
the null hypothesis follows asymptotically a mixture of χ2(0) and χ2(1) distribution (Zhi,
Grambsch, and Eberly 2005). This test is provided as standard output in frailtyEM.
The Commenges-Andersen score test for heterogeneity Commenges and Andersen (1995) is
implemented in frailtyEM. It may be applied to a proportional hazards model as fitted by
the coxph function or automatically calculated when estimating a frailty model. If the null
hypothesis of no unobserved heterogeneity is not rejected, it might be preferable to employ
simpler Cox-type models.

Marginal and conditional quantities

Several quantities are of interest in the context of frailty models. For a group of individuals
with covariate vector xij(t) and frailty Zi, the cumulative intensity (hazard) is defined as

Λij(t|Zi) = Zi

∫ t

0
exp(β⊤xij(t))λ0(s)ds. (7)

The survival function for such individual is given by Sij(t|Zi) = exp (−Λij(t|Zi)). These
quantities are conditional on the random effect Zi.
The population-level, or marginal quantities may be obtained by integrating out the frailty
from the conditional ones. The marginal survival is given by

Sij(t) = Eθ [exp(−Λij(t|Zi))] = LZ

(∫ t

0
exp(β⊤xij(t))λ0(s)ds

)
. (8)

The marginal cumulative intensity is then given by Λij(t) = − logSij(t). The “baseline”
intensities or survival refer to an individual with xij(t) ≡ 0.
In the simple case of only one binary covariate, we assume that there are two groups, the
baseline with x = 0 and “treatment” group with x = 1. In this case, the estimated β may
be interpreted as the conditional intensity ratio (hazard ratio) between two individuals with
the same frailty. Under a frailty model, the observed hazard ratio between these two groups
is typically attenuated in time (Aalen, Borgan, and Gjessing 2008, ch. 6). This marginal
intensity ratio is calculated as the ratio of the corresponding marginal cumulative intensities
Λij(t).
Several measures of dependence are implemented in frailtyEM. The first is the variance of
the estimated frailty distribution Z, which is useful for the gamma and the PVF family. The
variance of logZ is also useful for the positive stable distribution for which the variance is
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infinite. Other measures of association include Kendall’s τ and the median concordance. A
thorough discussion and comparison of these measures can be found in Hougaard (2000).

2.5. Goodness of fit

Given a large choice of distributions for the frailty, the question comes in selecting the
most suitable one. A comparison of the PVF family of frailty distributions can be found
in Hougaard (2000, ch. 7.8). In frailtyEM, all the frailty distributions depend on a positive
parameter θ (see Appendix A1). Given that all the distributions are part of the same family
(with gamma and positive stable being limiting cases in the PVF family), the likelihood of
different models is comparable across distributions. This argument suggests that it makes
sense, within the PVF family, to select the model with the distribution that has the highest
likelihood.
An explicit assumption of model (1) is that the censoring is non-informative on the frailty.
This assumption is usually difficult to test. In frailtyEM, a correlation score test is imple-
mented for the gamma distribution, following Balan, Boonk, Vermeer, and Putter (2016a).
This can also be used, for example, for testing whether a recurrent event event process and a
terminal event are associated.
Martingale residuals have been used to assess goodness of fit in terms on functional form of
the covariates (Therneau, Grambsch, and Fleming 1990; Lin, Wei, and Ying 1993). These
are provided by the residuals() function. For Cox models, there are several methods for
assessing the proportional hazards assumption (Therneau and Grambsch 2000, ch. 6). Graph-
ical methods involve plotting estimated survival or cumulative intensity curves. The plotting
capabilities of frailtyEM are discussed in Section 3.4. A second method is based on Schoen-
feld residuals (Grambsch and Therneau 1994). In R, this is implemented for Cox models in
the cox.zph function from the survival package. In frailtyEM, this is provided as part of
the output and may be used to test whether the conditional proportional hazards model (1)
holds. This is detailed in Section 3.5.

3. Estimation and implementation

3.1. Syntax

R> library("frailtyEM")

The main model fitting function in frailtyEM is emfrail:

R> emfrail(formula, data, distribution, control, ...)

The formula argument contains a Surv object as left hand side and a +cluster() statement
on the right hand side, specifying the column of data that defines the different clusters (this
is common to other packages such as frailtypack). This formulation, that is common to
most survival analysis packages, allows for the representation of clustered failures with left
truncation, recurrent events in both calendar time and gap time, time dependent covariates
and discontinuous intervals at risk (Therneau and Grambsch 2000, ch. 3.7, ch. 8). Two
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other statements may be used in the right hand side: +strata() for defining a column with
a stratifying variable, and +terminal() for defining an event status column for dependent
censoring (e.g. a terminal event in the case of recurrent events; this triggers the score test for
dependent censoring described Section 2.5).
The distribution argument determines the frailty distribution. It may be generated by the
emfrail_dist():

R> str(emfrail_dist(dist = "gamma", theta = 2))

List of 5
$ dist : chr "gamma"
$ theta : num 2
$ pvfm : num -0.5
$ left_truncation: logi FALSE
$ basehaz : chr "breslow"
- attr(*, "class")= chr "emfrail_dist"

where dist may be one of "gamma", "stable" or "pvf". For "pvf", the m parameter de-
termines the precise distribution: for m = −1/2 for the IG, m ∈ (−1, 0) for the so-called
Hougaard distribution and m > 0 a compound Poisson distribution with mass at 0. The
theta parameter determines the starting value of the optimization. The left_truncation
argument, if TRUE, leads to the calculation described in Section 2.3. The control argument
may be generated by the emfrail_control() function and regulates parameters regarding
to the estimation.

3.2. Profile EM algorithm

In frailtyEM, a general full-likelihood estimation procedure is implemented for the gamma,
positive stable and PVF frailty models, using a semi-parametric Breslow estimator for the
baseline intensity. The goal is to find θ, β, λ0(·) that maximize L(θ, β, λ0(·)) (3). This can be
achieved in two steps, as

max
θ,β,λ0

L(θ, β, λ0) = max
θ

{
max
β,λ0

L(β, λ0|θ)
}

where L̂(θ) = maxβ,λ0 L(β, λ0|θ) is the profile likelihood of θ. The profile EM algorithm refers
to using a two-stage maximization procedure: the “inner problem” which involves calculating
L̂(θ) (maximizing L(β, λ0|θ) for fixed θ with the EM algorithm), and the “outer problem”,
maximizing the profile likelihood L̂(θ) over θ.

The inner problem Maximizing the likelihood for fixed θ has been proposed for the gamma
frailty in Nielsen, Gill, Andersen, and Sørensen (1992) and Klein (1992), and generalizations
are discussed in Hougaard (2000). The crucial observation is that the E step involves cal-
culating the empirical Bayes estimates of the frailties ẑi = E[Zi|data]. This expectation is
taken with respect to the “posterior” distribution of the random effect. This is detailed in
Appendix A2. The M step involves estimating a proportional hazards model with the log ẑi

as offset for each cluster. This is done via the agreg.fit() function in the survival package,
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which obtains estimates of β via Cox’s partial likelihood. Subsequently, λ0 and Λ̃i (and Λ̃L,i,
in the case of left truncation) are calculated.
The EM algorithm is guaranteed to increase L(β, λ0|θ) with every iteration and to converge
to a local maximum. Convergence is achieved when the difference in L(β, λ0|θ) between two
consecutive iterations is smaller than ε.

The outer problem The “outer” problem involves maximizing L̂(θ). For this, a general
purpose Newton-type algorithm is employed (nlm from the stats package).

3.3. Standard errors and confidence intervals

The non-parametric information matrix is not directly obtained by the estimation procedure
described in Section 3.2. From the inner problem, the standard error of the estimates for
β and λ0(·) are calculated with Louis’ formula (Louis 1982), under the assumption that θ
is fixed to the maximum likelihood estimate. The standard errors obtained in this way are
included in the output as se and are comparable to the ones from other semi-parametric
frailty models (survival or coxme packages) that assume that θ is fixed. However, this leads
to an underestimate of the variability of β and λ0(·).
In frailtyEM, adjusted standard errors, presented in the column adj se, are calculated by
“propagating” the uncertainty from the estimation of θ to β, λ0(·). This is described in more
detail in Appendix A3.
From the outer problem, standard errors for θ (more precisely, of log θ, since the maximization
takes place on the log-scale for numerical stability) are directly obtained from the numeric
Hessian calculated by nlm. The delta method, as implemented in the msm package (Jackson
2011), is employed for calculating the standard errors for θ and the measures of dependence
that are detailed in Appendix A1.
Two types of confidence intervals for θ (and for the frailty variance, which, in the cases where
it exists, is 1/θ) are provided. The first are derived from symmetric confidence intervals on
the log-scale. The resulting asymmetric confidence interval has been shown to provide good
coverage (Balan et al. 2016b). The second, more computationally intensive, are referred to
as “likelihood-based confidence intervals”. Under the null hypothesis, the likelihood ratio
test statistic follows a χ2(0) + χ2(1) distribution. The critical value associated with this test
statistic is approximately 1.92. Based on L̂(θ), a one-dimensional search is performed to find
the confidence interval around the maximum likelihood estimate θ̂ within which log L̂(θ) ≥
log L̂(θ̂) − 1.92. The advantage of this type of confidence interval is that it is transformation
invariant (with the same coverage for all derived dependence measures) and it has a 1-1
correspondence with the likelihood ratio test.

3.4. Methods

The emfrail function returns an object of class emfrail that is documented in ?emfrail.
Usual methods are associated with this class of objects: print(), coef(), vcov(), residuals(),
model.matrix(), model.frame(), logLik().
The summary() method returns an object of class emfrail_summary(), the printing of which
contains general fit information, covariate estimates and distribution-specific measures of
dependence and goodness of fit, discussed in Section 2.5. Arguments to summary() may be
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used to show confidence intervals based on either the likelihood function or the delta method,
as described in Section 3.3. Other arguments control the amount of information that is printed
and may be used when less output is desirable.
The method for prediction of survival curves and cumulative intensity curves is implemented
in predict(). Both conditional and marginal curves defined in Section 2.4 may be produced.
The prediction is made for individuals with covariate values specified in a data frame (via
the newdata argument) or for a fixed linear predictor (via the lp argument). For stratified
models, the strata must also be specified. By default, the predict function creates predictions
for each row of newdata or for each value of lp separately. With the individual argument,
predicted curves may be produced for individuals with specific at-risk patterns (for example,
if an individual is not at risk during a certain time frame), or for individuals with time
dependent covariates.
After xij(t) is specified to predict(), Λij(t|Z = 1) is calculated as in (7) and from this the
other quantities are derived, including the conditional survival, the marginal survival (8) and
the marginal cumulative intensity. Confidence bands are based on the asymptotic normality
of the estimated λ0, and are produced both adjusted and unadjusted for the uncertainty of θ.

3.5. Plotting and additional features

Two plot methods are provided based on both graphics package via plot() and the ggplot2
package, via autoplot(), both with identical syntax. Behind the scenes, they use calls to
predict(). The type argument determines the type of plot:

• type = "hist" for a histogram of the posterior estimates of the frailties;

• type = "pred" for plotting marginal and conditional cumulative hazard or survival
curves;

• type = "hr" for plotting marginal or conditional estimated hazard ratios between two
groups of individuals. The marginal hazard ratio is determined as the ratio of the
marginal intensities, as described in Section 2.4;

• type = "frail" for a scatter plot of the ordered posterior estimates of the frailties
(also called a “caterpillar plot”). For the gamma distribution, quantiles of the posterior
distribution are also included. Only available with the autoplot() method.

The Commenges-Andersen score test for heterogeneity is by default calculated every time
emfrail is called and is part of the standard output. A separate function ca_test() is also
provided, that may be used independently on Cox models produced by coxph() from the
survival package.
While martingale residuals may be obtained with the residuals() method, the test for
conditional proportional hazards, based on Schoenfeld residuals described in Section 2.5 may
be accessed in the $zph field of the fit. This is an object of class cox.zph borrowed from
the survival package and equivalent to calling cox.zph on a Cox model with the estimated
log-frailties as offset. The structure and plot methods are described in ?cox.zph.
An additional function is provided to calculate the marginal log-likelihood for a vector of
values of θ, emfrail_pll(), without actually performing the outer optimization. This may be
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useful for visualizing the profile log-likelihood or when debugging (e.g., to see if the maximum
likelihood estimate of θ lies on the boundary).

4. Illustration
The features of the package will now be illustrated with three well-known data sets available
in R: The CGD data set (recurrent events, calendar time), the kidney data set (recurrent
events, gap time) and the rats data set (clustered failures).

4.1. CGD

The data are from a placebo controlled trial of gamma interferon in chronic granulotomous
disease (CGD) and is available in the survival package. It contains the time to recurrence of
serious infections observed, from randomization until end of study for each patient (i.e. the
time scale is calendar time). For the purpose of illustration, we will use treat (treatment or
placebo) and sex (female or male) as covariates, although a larger number of variables are
recorded in the data set.

R> data("cgd")
R> cgd <- cgd[c("tstart", "tstop", "status", "id", "sex", "treat")]
R> head(cgd)

tstart tstop status id sex treat
1 0 219 1 1 female rIFN-g
2 219 373 1 1 female rIFN-g
3 373 414 0 1 female rIFN-g
4 0 8 1 2 male placebo
5 8 26 1 2 male placebo
6 26 152 1 2 male placebo

A basic gamma frailty model can be fitted like this:

R> gam <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd)
R> summary(gam)

Call:
emfrail(formula = Surv(tstart, tstop, status) ~ sex + treat +

cluster(id), data = cgd)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

sexfemale -0.227 0.797 0.396 0.396 -0.575 0.57
treatrIFN-g -1.052 0.349 0.310 0.310 -3.389 0.00
Estimated distribution: gamma / left truncation: FALSE
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Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00172
no-frailty Log-likelihood: -331.997
Log-likelihood: -326.619
LRT: 1/2 * pchisq(10.8), p-val 0.00052

Frailty summary:
estimate lower 95% upper 95%

Var[Z] 0.821 0.231 1.854
Kendall's tau 0.291 0.104 0.481
Median concordance 0.289 0.101 0.491
E[logZ] -0.464 -1.164 -0.120
Var[logZ] 1.241 0.260 4.341
theta 1.218 0.539 4.326
Confidence intervals based on the likelihood function

The first two parts of this output, about regression coefficients and fit summary, exist regard-
less of the frailty distributions. The last part, “frailty summary”, provides a different output
according to the distribution.
Both the Commenges-Andersen test for heterogeneity and the one-sided likelihood ratio test
deems the random effect highly significant. This is also suggested by the confidence interval
for the frailty variance, which does not contain 0.
To illustrate the predicted cumulative hazard curves we take two individuals, one from the
treatment arm and one from the placebo arm, both males:

R> library("ggplot2")
R> library("egg")
R> p1 <- autoplot(gam, type = "pred",
+ newdata = data.frame(sex = "male", treat = "rIFN-g")) +
+ ggtitle("rIFN-g") +
+ ylim(c(0, 2)) +
+ guides(colour = FALSE)
R> p2 <- autoplot(gam, type = "pred",
+ newdata = data.frame(sex = "male", treat = "placebo")) +
+ ggtitle("placebo") + ylim(c(0, 2))
R>

The two plots are shown in Figure 1.
The cumulative hazard in this case can be interpreted as the expected number of events at
a certain time. It can be seen that the frailty “drags down” the marginal hazard. This is a
well-known effect observed in frailty models, as described in Aalen et al. (2008, ch. 7). All
prediction results could also be obtained directly:

R> dat_pred <- data.frame(sex = c("male", "male"),
+ treat = c("rIFN-g", "placebo"))
R> predict(gam, dat_pred)
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Figure 1: Predicted conditional and marginal cumulative hazards for males, one from the
treatment arm and one from the placebo arm, as produced by autplot() with type =
"pred".

For a hypothetical individual that changes treatment from placebo to rIFN-g at time 200,
predictions may also be obtained:

R> dat_pred_b <- data.frame(sex = c("male", "male"),
+ treat = c("placebo", "rIFN-g"),
+ tstart = c(0, 200), tstop = c(200, Inf))
R> p <- autoplot(gam, type = "pred", newdata = dat_pred_b, individual = TRUE) +
+ ggtitle("change placebo to rIFN-g at time 200")
R>

This plot is shown in Figure 2.
A positive stable frailty model can also be fitted by specifying the distribution argument.

R> stab <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd,
+ distribution = emfrail_dist(dist = "stable"))
R> summary(stab)

Call:
emfrail(formula = Surv(tstart, tstop, status) ~ sex + treat +

cluster(id), data = cgd, distribution = emfrail_dist(dist = "stable"))

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

sexfemale -0.137 0.872 0.407 0.407 -0.337 0.74
treatrIFN-g -1.085 0.338 0.332 0.336 -3.230 0.00
Estimated distribution: stable / left truncation: FALSE
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Figure 2: Predicted conditional and marginal cumulative hazards for a male that switches
treatment from placebo to rIFN-g at time 200 as produced by autoplot() with type =
"pred"

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00172
no-frailty Log-likelihood: -331.997
Log-likelihood: -329.39
LRT: 1/2 * pchisq(5.21), p-val 0.0112

Frailty summary:
estimate lower 95% upper 95%

Kendall's tau 0.104 0.011 0.236
Median concordance 0.102 0.011 0.233
E[logZ] 0.067 0.006 0.179
Var[logZ] 0.406 0.037 1.176
Attenuation 0.896 0.764 0.989
theta 8.572 3.232 90.316
Confidence intervals based on the likelihood function

The coefficient estimates are similar to those of the gamma frailty fit. The “Frailty sum-
mary” part is quite different. For the positive stable distribution, the variance is not defined.
However, Kendall’s τ is easily obtained, and in this case it is smaller than in the gamma
frailty model. Unlike the gamma or PVF distributions, the positive stable frailty predicts a
marginal model with proportional hazards where the marginal hazard ratios are an attenuated
version of the conditional hazard ratios shown in the output. The calculations are detailed
in Appendix A1.
The conditional and marginal hazard ratios from different distributions can also be visualized
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Figure 3: Conditional and marginal hazard ratio between two males from the placebo and
rIFN-g treatment arms from the gamma, PS and IG frailty models as produced by autoplot()
with type = "hr".

easily. We also fitted an IG frailty model on the same data, and plots of the hazard ratio
between two males from different treatment arms created below are shown in Figure 3.

R> ig <- emfrail(Surv(tstart, tstop, status) ~ sex + treat + cluster(id),
+ data = cgd,
+ distribution = emfrail_dist(dist = "pvf"))
R> newdata <- data.frame(treat = c("placebo", "rIFN-g"),
+ sex = c("male", "male"))
R> pl1 <- autoplot(gam, type = "hr", newdata = newdata) +
+ ggtitle("gamma") +
+ guides(colour = FALSE)
R> pl2 <- autoplot(stab, type = "hr", newdata = newdata) +
+ ggtitle("PS") +
+ guides(colour = FALSE)
R> pl3 <- autoplot(ig, type = "hr", newdata = newdata) +
+ ggtitle("IG")
R> pp <- ggarrange(pl1, pl2, pl3, nrow = 1)

While all models shrink the hazard ratio towards 1, it can be seen that this effect is slightly
more pronounced for the gamma than for the IG, while the PS exhibits a constant “av-
erage” shrinkage. This type of behaviour from the PS is often seen as a strength of the
model (Hougaard 2000).

4.2. Kidney

The kidney data set is also available in the survival package. The data, presented originally
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in McGilchrist and Aisbett (1991), contains the time to infection for kidney patients using
a portable dialysis equipment. The infection may occur at the insertion of the catheter
and at that point, the catheter must be removed, the infection cleared up, and the catheter
reinserted. Each of the 38 patients has exactly 2 observations, representing recurrence times
from insertion until the next infection (i.e. the time scale is gap time). There are 3 covariates:
sex, age and disease (a factor with 4 levels). A data analysis based on frailty models is
described in Therneau and Grambsch (2000, ch. 9.5.2). For the purpose of illustration, we do
not include the disease variable here.

R> data("kidney")
R> kidney <- kidney[c("time", "status", "id", "age", "sex" )]
R> kidney$sex <- ifelse(kidney$sex == 1, "male", "female")
R> head(kidney)

time status id age sex
1 8 1 1 28 male
2 16 1 1 28 male
3 23 1 2 48 female
4 13 0 2 48 female
5 22 1 3 32 male
6 28 1 3 32 male

R> zph_t = emfrail_control(zph = TRUE)
R> m_gam <- emfrail(Surv(time, status) ~ age + sex + cluster(id),
+ data = kidney, control = zph_t)
R> m_ps <- emfrail(Surv(time, status) ~ age + sex + cluster(id),
+ data = kidney,
+ distribution = emfrail_dist("stable"),
+ control = zph_t)

Therneau and Grambsch discuss the gamma fit conclude that an outlier case is at the source
of the frailty effect. We omit the frailty part of the output; the estimated frailty variance is
0.397 with a 95% likelihood based confidence interval of (0.04, 1.03) and therefore significantly
different from 0.

R> summary(m_gam, print_opts = list(frailty = FALSE))

Call:
emfrail(formula = Surv(time, status) ~ age + sex + cluster(id),

data = kidney, control = zph_t)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

age 0.00544 1.00545 0.01158 0.01170 0.46481 0.64
sexmale 1.55284 4.72487 0.44518 0.49952 3.10868 0.00
Estimated distribution: gamma / left truncation: FALSE
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Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00238
no-frailty Log-likelihood: -184.657
Log-likelihood: -182.053
LRT: 1/2 * pchisq(5.21), p-val 0.0112

However, the LRT is not significant for the positive stable frailty model (which does not have
a defined frailty variance, for comparison). Furthermore, the estimated regression coefficients
are different.

R> summary(m_ps, print_opts = list(frailty = FALSE))

Call:
emfrail(formula = Surv(time, status) ~ age + sex + cluster(id),

data = kidney, distribution = emfrail_dist("stable"), control = zph_t)

Regression coefficients:
coef exp(coef) se(coef) z p

age 0.00218 1.00218 0.00922 0.23649 0.81
sexmale 0.82100 2.27278 0.29873 2.74830 0.01
Estimated distribution: stable / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.00238
no-frailty Log-likelihood: -184.657
Log-likelihood: -184.657
LRT: 1/2 * pchisq(0), p-val>0.5

The test for proportional hazards described in Section 2.5 reveals an insight into how the
two models work. The gamma frailty model specifies conditional proportional hazards and
marginal non-proportional hazards, while the positive stable model specifies proportional
hazards at both levels.

R> m_gam$zph

chisq df p
age 0.0599 1 0.807
sexmale 2.7504 1 0.097
GLOBAL 2.9649 2 0.227

R> m_ps$zph

chisq df p
age 0.1 1 0.75147
sexmale 11.1 1 0.00088
GLOBAL 12.2 2 0.00230
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Therefore, the gamma frailty model appears to explain the marginal non-proportionality,
while the positive stable frailty model does not. Such a phenomenon may be observed if, for
example, the PS marginal model is a bad fit for the data. Further research is being carried
out on this topic (Balan and Putter Forthcoming).

4.3. Rats data

These is an example of clustered failure data from Mantel, Bohidar, and Ciminera (1977)
Three rats were chosen from each of 100 litters, one of which was treated with a drug (rx =
1) and the rest with placebo (rx = 0), and then all followed for tumor incidence. The data
are also available in the survival package.

R> data("rats")
R> head(rats)

litter rx time status sex
1 1 1 101 0 f
2 1 0 49 1 f
3 1 0 104 0 f
4 2 1 91 0 m
5 2 0 104 0 m
6 2 0 102 0 m

While often used to illustrate frailty models, the gamma frailty fit shows a relatively large,
yet not significant frailty variance

R> summary(emfrail(Surv(time, status) ~ rx + sex + cluster(litter),
+ data = rats))

Call:
emfrail(formula = Surv(time, status) ~ rx + sex + cluster(litter),

data = rats)

Regression coefficients:
coef exp(coef) se(coef) adj. se z p

rx 0.7873 2.1974 0.3135 0.3135 2.5112 0.01
sexm -3.1341 0.0435 0.7385 0.7409 -4.2298 0.00
Estimated distribution: gamma / left truncation: FALSE

Fit summary:
Commenges-Andersen test for heterogeneity: p-val 0.201
no-frailty Log-likelihood: -200.426
Log-likelihood: -199.73
LRT: 1/2 * pchisq(1.39), p-val 0.119

Frailty summary:
estimate lower 95% upper 95%
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Var[Z] 0.445 0.000 1.678
Kendall's tau 0.182 0.000 0.456
Median concordance 0.179 0.000 0.464
E[logZ] -0.239 -1.038 0.000
Var[logZ] 0.559 0.000 3.678
theta 2.245 0.596 Inf
Confidence intervals based on the likelihood function

The Surv object takes two arguments here: time of event and status. This implicitly assumes
that each row of the data (in this case, each rat) is under follow-up from time 0 to time. This
is very similar to the representation of the recurrent events in gap-time, where each recurrent
event episode is “at risk” from time 0 (time since the previous event).
We artificially simulated left truncation from an exponential distribution with mean 50, which
is now an entry time to the study. The rats with a follow-up smaller than the entry time are
removed.

R> set.seed(1)
R> rats$tstart <- rexp(nrow(rats), rate = 1/50)
R> rats_lt <- rats[rats$tstart < rats$time, ]

The first model, m1, is what happens if left truncation is completely ignored. Each rat is
assumed to have been at risk from time 0, which is not the case.

R> m1 <-
+ emfrail(Surv(time, status) ~ rx + cluster(litter),
+ data = rats_lt)

The second model, m2, is what happens when the at-risk indicator is correctly adjusted for,
with the entry time also present. Refering back to Section2.3, this is equivalent to considering
P (Z) instead of P (Z|A).

R> m2 <-
+ emfrail(Surv(tstart, time, status) ~ rx + sex + cluster(litter),
+ data = rats_lt)

As may be seen from equation (6), this is correct only if there is in fact no left truncation,
or if there is no variability in Z (i.e. Z is degenerate at 1). Therefore, this formulation is
correct, for example, when the Surv object represents recurrent events in calendar time, as
is the case in Section 4.1. This is, for example, what is returned by the frailty models in the
survival package.
The third model, m3, specifies the correct time at risk but also the fact that the distribution of
the frailty must be taken conditional on the entry time. Under this (artificial) left truncation
problem, this would be the correct way of analyzing this data.

R> m3 <-
+ emfrail(Surv(tstart, time, status) ~ rx + sex + cluster(litter),
+ data = rats_lt,
+ distribution = emfrail_dist(left_truncation = TRUE))
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In this case, the output shows little difference between models. This is because the frailty,
even in the complete data set, is not significant. In this case, the frailty distribution is also
not significant in either m2 or m3 and they lead to estimates very close to each other. In a
limited unpublished simulation study, we have seen that applying the correction in m3 leads
to approximately unbiased estimates of the regression coefficients, unlike m1 or m2.

5. Conclusion

In the current landscape for modeling random effects in survival analysis, frailtyEM is a
contribution that focuses on implementing classical methodology in an efficient way with a
wide variety of frailty distributions. We have shown that the EM based approach has certain
advantages in the context of frailty models. First of all, it is semiparametric, which means
that it is a direct extension of the Cox proportional hazards model. In this way, classical
results from semiparametric frailty models (for example, based on the data sets in Section 4)
can be replicated and further insight may be obtained by fitting models with different frailty
distributions. Until now, the Commenges-Andersen test, positive stable and PVF family,
have not all been implemented in a consistent way in an R package. Another advantage of
the EM algorithm is that, by its nature, it is a full maximum likelihood approach, and the
estimators have well known desirable asymptotic properties.

To our knowledge, no other statistical package provides similar capabilities for visualizing
conditional and marginal survival curves, or the marginal effect of covariates. Since this is
implemented across a large number of distributions, this might come to the aid of both applied
and theoretical research into shared frailty models. While the question of model selection with
different random effect distributions is still an open one, the functions included frailtyEM may
be useful for further research in this direction.

Evaluating goodness of fit for shared frailty models is still a complicated issue, particularly in
semiparametric models. However, tests based on martingale residuals, such as that of Com-
menges and Rondeau (2000), should be now possible by extrating the necessary quantities
from an emfrail fit.

Regarding the left truncation implementation in frailtyEM, it is very similar to that from
the parfm package. However, performing of a larger simulation study to assess the effects of
left truncation in clustered failure data with semiparametric frailty models is now possible.
In a limited simulation study we have seen that correctly accounting for this phenomenon
leads to unbiased estimates. The scenario of time dependent covariates and left truncation
is not supported at this time. This is because this would require also specifying values of
these covariates from time 0 to the left truncation time, which would likely involve some
speculation.

Technically, extending the package to other distributions is possible, as long as their Laplace
transform and the corresponding derivatives may be specified in closed form. An interesting
extension would be to choose discrete distributions from the infinitely divisible family for the
random effect, such as the Poisson distribution. The newest features will be implemented in
the development version of the package at https://github.com/tbalan/frailtyEM.

https://github.com/tbalan/frailtyEM
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Appendix A1: Results for the Laplace transforms
We consider distributions from the infinitely divisible family Ash (1972, ch 8.5) with the
Laplace transform

LY (c) = exp(−αψ(c; γ)).
We now consider how α and γ can be represented as a function of a positive parameter θ.

The gamma distribution For Y a gamma distributed random variable, ψ(c; γ) = log(γ+
c) − log(γ), the derivatives of which are

ψ(k)(c; γ) = (−1)k−1(k − 1)!(γ + c)−k.

For identifiability, the restriction EY = 1 is imposed; this leads to α = γ. The distribution
is parametrized with θ > 0, θ = α = γ. The variance of Y is VARY = θ−1. Kendall’s τ
is then τ = 1

1+2θ and the median concordance is κ = 4
(
21+1/θ − 1

)−θ
− 1. Furthermore,

E log Y = ψ(θ) − log θ and VAR log Y = ψ′(θ) where ψ and ψ′ are the digamma and trigamma
functions.

The positive stable distribution For Y a positive stable random variable, ψ(c; γ) = cγ

with γ ∈ (0, 1), the derivatives of which are

ψ(k)(c; γ) = Γ(k − β)
Γ(1 − γ) (−1)k−1cγ−1.

For identifiability, the restriction α = 1 is made; EY is undefined and VARY = ∞. The
distribution is parametrized with θ > 0, γ = θ

θ+1 .

Kendall’s τ is then τ = 1− θ
θ+1 and the median concordance is κ = 22−2

θ
θ+1 −1. Furthermore,

E log Y = −
({

θ

1 + θ

}−1
− 1

)
ψ(1)

and
VAR log Y =

({
θ

1 + θ

}−2
− 1

)
ψ′(1)

.
In the case of the PS distribution, the marginal hazard ratio is an attenuated version of the
conditional hazard ratio. If the conditional log-hazard ratio is β, the marginal hazard ratio
is equal to β θ

θ+1 .

The PVF distributions For Y a PVF distribution with fixed parameter m ∈ R, m > −1
and m ̸= 0,

ψ(c; γ) = sign(m)(1 − γm(γ + c)−m)
where sign(·) denotes the sign. This is the same parametrizaion as in Aalen et al. (2008).
The derivatives of ψ are

ψ(k)(c; γ) = sign(m)(−γ)m(γ + c)−m−k(−1)k+1 Γ(m+ k)
Γ(m) .
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The expectation of this distribution can be calculated as minus the first derivative of the
Laplace transform calculated in 0, i.e.,

EY = αψ′(0; γ)L(0;α, γ) = α

γ
m.

The second moment of the distribution can be calculated as the second derivative of the
Laplace transform at 0,

EY 2 = α2ψ′2(0) − αψ′′(0) = α2

γ2m
2 + α

γ2m(m+ 1).

For identifiability, we set EY = 1. The distribution is parametrized through a parameter θ > 0
which is determined by γ = (m+ 1)θ and α = sign(m)m+1

m θ. This results in VARY = θ−1.
A slightly different parametrization is presented in Hougaard (2000), dependent on the pa-
rameter ηH . The correspondence is obtained by setting ηH = (m+ 1)θ.
The PVF family of distributions includes the gamma as a limiting case when m → 0. When
γ → 0 the positive stable distribution is obtained. When m = −1 the distribution is degen-
erate, and with m = 1 a non-central gamma distribution is obtained. Of special interest is
the case m = −0.5, when the inverse Gaussian distribution is obtained. With m > 0, the
distribution is compound Poisson with mass at 0. In this case, P (Y = 0) = exp(−m+1

m θ).
For m < 0, closed forms for Kendall’s τ and median concordance are given in Hougaard (2000,
Section 7.5).

Left truncation

To determine the Laplace transform under left truncation, we determine ψ̃ from (4) and (5).
For the gamma distribution, we have

ψ̃(c; γ,ΛL) = log(γ + ΛL + c) − log(γ + ΛL)

which implies that the frailty of the survivors is still gamma distributed, but with a change
in the parameter γ.
For the positive stable we have

ψ̃(c; γ,ΛL) = (c+ ΛL)γ − Λγ
L,

which is not a positive stable distribution any more.
For the PVF distributions, we have

ψ̃(c; γ,ΛL) = sign(m)
(
γm(γ + ΛL)−m − (γ + ΛL)m(γ + ΛL + c)−m) ,

which is not PVF any more (however, it stays in the same “infinitely divisible” family).

Closed forms

The gamma distribution leads to a Laplace transform for which the derivatives can be calcu-
lated in closed form. It can be seen that

L(c;α, γ) = γα(γ + c)−α.
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The k-th derivative of this expression is

L(k)(c;α, γ) = γα(γ + c)−γ−k Γ(α+ k)
Γ(α) .

This can be exploited also in the case of left truncation, since the gamma frailty is preserved,
as shown in the previous section.
The inverse gaussian distribution is obtained when the PVF parameter is m = −1

2 . Under
the current parametrization, we have β = θ/2 and α = θ. In this case, the Laplace transform
is

L(c; θ) = exp
{
θ

(
1 −

√
1 + 2c/θ

)}
.

The k-th derivative of this can be written as

L(k)(c; θ) = (−1)k
(2
θ
c+ 1

)−k/2 Kk−1/2

(√
2θ
(
c+ θ

2

))
K1/2

(√
2θ
(
c+ θ

2

))
where K is the modified Bessel function of the second kind.
The emfrail() uses the closed form formulas when possible, by default.

Appendix A2: The E step
For the E step β and λ0 are fixed, either at their initial values or at the values from the
previous M step. Let ni = ∑

j,k δijk be the number of events in cluster i. The conditional
distribution of Zi given the data is described by the Laplace transform

L(c) =
E
[
Zni

i exp(−ZiΛ̃i) exp(−Zic)
]

E
[
Zni

i exp(−ZiΛ̃i)
] = L(ni)(c+ Λ̃i)

L(ni)(Λ̃i)
. (9)

The E step reduces to calculating the expectation of this distribution, i.e. the derivative of
(9) in 0:

ẑi = −L(ni+1)(Λ̃i)
L(ni)(Λ̃i)

. (10)

The marginal (log-)likelihood is also calculated at this point to keep track of convergence of
the EM algorithm. It can be seen that (3) involves the denominator of (9) in addition to a
straight-forward expression of β and λ0.
The E step is generally the expensive operation of the EM algorithm. In a few scenarios (10)
may be expressed in a closed form: for the gamma and the inverse gaussian distributions. In
these scenarios, the E step is calculated with the fast_estep() routine. For all other cases,
the E step is calculated via a recursive algorithm with an internal routine which is described
here. For easing the computational burden, this is implemented in C++ and is interfaced
with R via the Rcpp library (Eddelbuettel and François 2011; Eddelbuettel 2013).
As shown in (9), the calculation of the E step for the general case involves taking derivatives
of Laplace transforms of the form

L(c) = exp(g(c))
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where for simplicity we denote g(c) = −αψ(c; γ). The expression for the k-th derivative of
L(c) can be obtained with a classical calculus result, di Bruno’s formula, i.e.,

L(n)(c) =
∑

m∈Mn

n!
m1!m2!...mn!

n∏
j=1

(
g(j)(c)
j!

)mj

L(c), (11)

where Mn = {(m1, ...,mn)|∑n
j=1 j ×mj = n}. For example, for n = 3,

M3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)} .

This corresponds to the “partitions of the integer” 3, i.e., all the integers that sum up to 3:

{(1, 1, 1), (1, 2, 0), (3, 0, 0)} .

We implemented a recursive algorithm in C++ which resides in the emfrail_estep.cpp
which loops through these partitions, calculates the corresponding derivatives of ψ and the
coefficients.

Appendix A3: Standard errors
Considering the vector of parameters η = (β, λ0(·)), and consider that for a given θ, ηθ is
the maximizer of the “inner problem” described in Section (3.2), i.e. η(θ) = argmaxηL(η|θ).
Further, for a given θ, the variance-covariance matrix VAR(η(θ)) is obtained with Louis’
formula (Louis 1982). The restulting standard errors for η are underestimated because they
do not factor in the uncertainty in estimating θ, as is noted also in Therneau and Grambsch
(2000, sec. 9.5). Below is the sketch of how this is addressed in frailtyEM, following Hougaard
(2000, Appendix B.3).
Let θ̂ be the maximum likelihood estimate with variance VAR(θ̂) and standard error se(θ̂),
which are given by the maximizer from the “outer problem”. The correct information matrix
for inference on η is a “perturbed” version of VAR(η(θ̂)), namely

VAR(η(θ̂)) +
(
dη

dθ

)
VAR(θ̂)

(
dη

dθ

)⊤
.

Here, dη/dθ may be approximated as (η+ − η−)/se(θ̂) where η+ = η(θ̂ + se(θ̂)/2) and η− =
η(θ̂ − se(θ̂)/2). In emfrail, this whole calculation takes place for log θ for computational
stability, and to avoid the edge problem when θ is close to 0.
Confidence intervals for the conditional cumulative hazard are obtained from the part of
the variance-covariance matrix corresponding to λ0(·), and confidence intervals for Λ0(t) =∑

s≤t λ0(t) are obtained with the usual formula. For confidence intervals, the delta method
is used to calculate a symmetric confidence interval for log Λ0(t) for all t, which is then
exponentiated.
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